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Abstract. The K̄N system close to threshold is analyzed in view of the new accurate DEAR kaonic
hydrogen data. The calculations are performed using chiral SU(3) effective field theory in combination with
non-perturbative schemes based on coupled channels. Several variants of such approaches are compared
with experimental data and the differences in the results are discussed. Coulomb and isospin-breaking
effects turn out to be important and are both taken into account. The pole structure of the Λ(1405)-
resonance close to the K̄N threshold is critically examined.

PACS. 11.80.-m Relativistic scattering theory – 12.39.Fe Chiral Lagrangians – 13.75.Jz Kaon-baryon
interactions – 36.10.Gv Mesonic atoms and molecules, hyperonic atoms and molecules

1 Introduction

Chiral perturbation theory is an appropriate framework
to investigate the dynamics of hadrons at low energies,
whereby symmetries and symmetry-breaking patterns of
QCD are incorporated. A systematic loop expansion can
be carried out, but its perturbative application is often
limited to a small range of energies and breaks down in
the vicinity of resonances. In the K−p channel, for ex-
ample, the existence of the Λ(1405)-resonance just below
the K−p threshold renders SU(3) chiral perturbation the-
ory (ChPT) inapplicable. However, the combination with
non-perturbative coupled-channels techniques has proved
useful by generating the Λ(1405) dynamically as an I = 0
K̄N quasibound state and as a resonance in the πΣ chan-
nel [1,2].

Such approaches have been applied to a variety of
meson-baryon scattering processes with quite some suc-
cess [2–9]. All those calculations appear to describe the
available scattering data similarly well, whereas the de-
tails of the chosen framework, e.g. the driving terms in
the Bethe-Salpeter equation, differ in most cases. To our
knowledge no attempt has so far been made to compare
the different approaches systematically. To this end, we
study in the present work several variants of the coupled-
channels approaches to the K̄N system with different
interaction kernels, hence providing an estimate for the
model dependence of such analyses.
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The K̄N channel is of particular interest as a testing
ground for chiral SU(3) symmetry in QCD and for the role
of explicit chiral symmetry breaking due to the relatively
large strange quark mass. High-precision K−p threshold
data set important constraints for theoretical approaches
and have recently been supplemented by the new accu-
rate results for the strong-interaction shift and width of
kaonic hydrogen from the DEAR experiment [10] which
reduced the mean values and error ranges of the previous
KEK experiment [11]. There is thus renewed interest in
an improved analysis of these data along with existing in-
formation on K−p scattering, the πΣ mass spectrum and
K−p threshold decay ratios. Some results have already
been presented in [12].

The electromagnetic interaction is responsible for the
binding of kaonic hydrogen and also contributes signifi-
cantly in elasticK−p scattering close to threshold. It must
therefore be included in the investigation of the K−p sys-
tem and we study the importance of Coulomb and isospin-
breaking effects in the K̄N system.

Another topic of interest is the pole structure of the
Λ(1405)-resonance. In the context of coupled-channels ap-
proaches it has been argued that the Λ(1405) is a super-
position of two nearby poles [5,8,13,14]. Both poles cou-
ple with different strengths to the πΣ and K̄N channels,
so that by performing experiments with different initial
states the observed peak structure should change. Photo-
production of Λ(1405) has been studied at ELSA with
the SAPHIR detector at 2.6 GeV and in the charged
decay channels, π+Σ− and π−Σ+, at SPring-8/LEPS
with incident photon energies in the range 1.5 < E lab

γ <
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2.4 GeV [15]. Another upcoming experiment at ELSA with
the Crystal Barrel detector is the decay of the Λ(1405)
into the π0Σ0 channel which provides a unique signa-
ture of Λ(1405), since the π0Σ0 channel does not have
an isospin I = 1 component and hence does not couple to
the Σ(1385)-resonance.

On the theoretical side, the positions of the relevant
poles in the complex

√
s-plane have been studied in [8,13]

by using only the lowest-order effective Lagrangian. We
critically examine the changes in the pole positions by
including the contributions from the next-to-leading order
Lagrangian.

The present work is organized as follows. The effec-
tive Lagrangian and a short description of the coupled-
channels method is outlined in the next section. In sect. 3
the results of different coupled-channels approaches are
compared with experiment and the differences between
these frameworks are highlighted. Moreover, the addi-
tional tight constraints set by the new DEAR experiment
are emphasized. Coulomb and isospin-breaking effects are
discussed. Section 4 summarizes our findings, while some
technicalities are relegated to the appendix.

2 Formalism

2.1 Effective Lagrangian

In this section, we briefly outline the coupled-channels
formalism of meson-baryon scattering. It is based on
the SU(3) chiral effective Lagrangian which incorporates
the same symmetries and symmetry-breaking patterns as
QCD and describes the coupling of the pseudoscalar octet
(π,K, η) to the ground-state baryon octet (N,Λ,Σ,Ξ).
The Lagrangian

L = Lφ + LφB (1)

includes the mesonic term Lφ up to second chiral or-
der [16],

Lφ =
f2

4
〈uµuµ〉+

f2

4
〈χ+〉, (2)

where 〈. . . 〉 denotes the trace in flavor space. The pseu-
doscalar meson octet φ is arranged in a matrix-valued field

U(φ) = u2(φ) = exp

(√
2i
φ

f

)

, (3)

and f is the pseudoscalar decay constant in the chiral
limit. The quantity U enters the Lagrangian in the com-
binations uµ = iu†∂µUu

† and χ+ = 2B0(u
†Mu†+uMu),

the latter one involving explicit chiral symmetry break-
ing via the quark mass matrix M = diag (mu,md,ms),
and B0 = −〈0| q̄q |0〉 /f2 relates to the order parameter
of spontaneously broken chiral symmetry.

The second piece of the Lagrangian in eq. (1), LφB , de-
scribes the meson-baryon interactions and reads at lowest
order [17]

L(1)φB = i〈B̄γµ[Dµ, B]〉 −M0〈B̄B〉 −
1

2
D〈B̄γµγ5{uµ, B}〉

−1

2
F 〈B̄γµγ5[uµ, B]〉. (4)

The 3×3 matrix B collects the ground-state baryon octet,
M0 is the common baryon octet mass in the chiral limit
and D, F denote the axial vector couplings of the baryons
to the mesons. Their numerical values can be extracted
from semileptonic hyperon decays and we employ the cen-
tral values determined in [18]: D = 0.80, F = 0.46. The
covariant derivative of the baryon field is given by

[Dµ, B] = ∂µB + [Γµ, B] (5)

with the chiral connection

Γµ = 1
2 [u

†, ∂µu]. (6)

We also need the next-to-leading order contribution to
LφB which is given by

L(2)φB = bD〈B̄{χ+, B}〉+ bF 〈B̄[χ+, B]〉+ b0〈B̄B〉〈χ+〉
+d1〈B̄{uµ, [uµ, B]}〉+ d2〈B̄[uµ, [u

µ, B]]〉
+d3〈B̄uµ〉〈uµB〉+ d4〈B̄B〉〈uµuµ〉, (7)

where only the pieces relevant for our analysis are dis-
played. The values of the low-energy constants bi and di
utilized in this work have been constrained also by the re-
cent coupled-channels analysis for η photoproduction [7].
We will come back to this point later in sect. 3 and leave
their values undetermined for the moment.

2.2 Coupled channels

For K̄N scattering chiral perturbation theory based on
the Lagrangian from the preceding section fails due to
the presence of the nearby Λ(1405) subthreshold reso-
nance. Unitarity effects from final-state interactions are
important and must be included in a non-perturbative
fashion. To this end, one computes from the Lagrangian
the relativistic tree level amplitude Vjb,ia(s,Ω;σ, σ′) of the

meson-baryon scattering processes φiB
σ
a → φjB

σ′

b (with
spin indices σ, σ′). This amplitude is the driving term
in the coupled-channels integral equation determining the
meson-baryon T -matrix.

The effective meson-baryon Lagrangian, eqs. (4), (7),
has been used at different levels of sophistication in the
literature. While only the Weinberg-Tomozawa term from
the covariant derivative in eq. (4) is taken, e.g., in [2], the
direct and crossed Born terms are included in [5]. In [3]
the Lagrangian of second chiral order is added which yields
additional contact interactions, whereas in [7] the contact
interactions and the direct Born term have been taken into
account, but the crossed Born term has been excluded. In
order to provide an estimate of the model-dependence of
such approaches, we will discuss four different choices for
the amplitude Vjb,ia(s,Ω;σ, σ′).

First, only the leading-order contact (Weinberg-
Tomozawa) term is taken into account, see fig. 1a. Sub-
sequently, the contact interactions from the Lagrangian

of second chiral order, L(2)
φB , are included, see fig. 1b. In

the third and fourth approach we add successively the
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Fig. 1. Shown are the O(p1) (a) and O(p2) (b) contact interactions as well as the direct (c) and crossed (d) Born terms. Solid
and dashed lines represent baryons and pseudoscalar mesons, respectively.

direct (fig. 1c) and crossed (fig. 1d) Born diagrams. For
brevity, we will refer to these variants as “WT” (Weinberg-
Tomozawa), “c” (additional contact terms), “s” (includ-
ing s-channel Born diagram) and “u” (including u-channel
Born diagram), respectively.

It turns out that already the inclusion of the next-to-
leading order contact terms, which have been neglected
in many previous coupled-channels analyses [2,5,6,8], im-
proves the agreement of our results with the well-measured
K−p threshold branching ratios and the shape of the πΣ
mass spectrum, whereas the Born diagrams fig. 1c, d yield
only small numerical changes. The explicit expressions for
the diagrams, figs. 1a, c, d, can be found in [5], but for
completeness we display the formulae of all those contri-
butions in the appendix.

Since we are primarily concerned with a narrow center-
of-mass energy region around the K̄N threshold, it is suf-
ficient to restrict ourselves to the s-wave (matrix) ampli-
tude V (s) given by

V (s) =
1

8π

∑

σ

∫

dΩ V (s,Ω;σ, σ) , (8)

where we have averaged over the spin σ = ±1/2 of the
baryons and s is the invariant energy squared. We work in
the physical basis assigning each particle its physical mass.
This scheme produces the correct thresholds of the differ-
ent channels, and it is consistent at the order at which the
driving amplitudes V are calculated.

For each partial wave l unitarity imposes a restriction
on the (inverse) T -matrix above the pertinent thresholds

ImT−1l = − |qcm|
8π
√
s

(9)

with qcm being the three-momentum in the center-of-mass
frame of the channel under consideration. Hence the imag-
inary part of T−1l is identical with the imaginary part of

the basic scalar loop integral G̃ above threshold,

G̃(q2) =

∫

ddp

(2π)d
i

[(q − p)2 −M2
B + iε][p2 −m2

φ + iε]
,

(10)
where MB and mφ are the physical masses of the baryon
and the meson, respectively [5,7,19]. In dimensional reg-

ularization we obtain for the finite part G of G̃,

G(q2) = a(µ) +
1

32π2q2

{

q2

[

ln

(

m2
φ

µ2

)

+ ln

(

M2
B

µ2

)

− 2

]

+(m2
φ −M2

B) ln

(

m2
φ

M2
B

)

− 8
√

q2 |qcm|

×artanh
(

2
√

q2 |qcm|
(mφ +MB)2 − q2

)}

, (11)

where µ is the regularization scale. The subtraction con-
stant a(µ) cancels the scale dependence of the chiral loga-
rithms and simulates higher-order contributions with the
value of a(µ) depending on the respective channel.

To the order we are working the inverse of the T -matrix
can be written as (suppressing the subscript l (= 0) for
brevity)

T−1 = V −1 +G , (12)

which yields after inversion

T = [1 + V ·G]−1 V. (13)

Equation (13) is a matrix equation with the diagonal ma-
trix G collecting the loop integrals in each channel. This
amounts to a summation of a bubble chain to all orders
in the s-channel, equivalent to solving a Bethe-Salpeter
equation with V as driving term, where all momenta in
V are set to their on-shell values. This so-called on-shell
scheme reduces the full Bethe-Salpeter equation to the
simple matrix equation (13).

However, in the presence of the crossed Born term
(fig. 1d) this simplification must be treated with care due
to the appearance of unphysical subthreshold cuts. In the
unphysical region below the threshold of a given channel
the propagator of the intermediate baryon in the crossed
Born term leads to divergences (in the SU(2) case this fact
is known as the nucleon cut [20]), which correspond to log-
arithmic singularities in the s-wave amplitude. Within the
coupled-channels formalism the subthreshold cuts of heav-
ier virtual meson-baryon pairs can contribute above the
thresholds of physical processes involving lighter meson-
baryon systems. Since this is an artifact of the on-shell
formalism and would not be present in a full field theoret-
ical calculation, we eliminate the unphysical subthreshold
cuts by matching the contribution of the crossed Born dia-
gram to a constant value below a certain invariant energy√
s0. We have convinced ourselves that our conclusions do

not depend on the specific choice of
√
s0 as long as it is not



82 The European Physical Journal A

too close to the singularities. As a matter of fact, the con-
tribution of the crossed Born diagram to the full s-wave
interaction kernel V turns out to be numerically small.

2.3 Coulomb interaction

The Coulomb interaction has been shown to yield signifi-
cant contributions to the elasticK−p scattering amplitude
up to kaon laboratory momenta of 100–150 MeV/c [21].
Close to K−p threshold the electromagnetic interactions
are thus important as well and should not be neglected
as in previous coupled-channels calculations [2,3,5,6,8].
The quantum-mechanical Coulomb scattering amplitude
for point charges can be calculated exactly and reads [22]

f coulK−p→K−p =
1

2q2
cm aB sin2 (θcm/2)

Γ (1− i/(|qcm| aB))
Γ (1 + i/(|qcm| aB))

× exp

[

2i

|qcm| aB
ln sin

θcm
2

]

, (14)

where aB = 84 fm is the Bohr radius of the K−p sys-
tem, while qcm and θcm denote the center-of-mass three-
momentum and scattering angle, respectively. We account
for the electromagnetic interaction by adding f coul

K−p→K−p

to the unitarized strong elastic K−p amplitude

f strK−p→K−p =
1

8π
√
s
T str
K−p→K−p . (15)

The total elastic cross-section is then obtained by per-
forming the integration of dσ/dΩ = |f coul + f str|2 over
the center-of-mass scattering angle. Since this expression
is divergent for forward scattering, a cutoff for the scat-
tering angle must be introduced. In the analysis of the
scattering data [23,24], forward angles were suppressed
by accepting only events with θcm larger than a minimum
angle θmin. In practice the value employed in ref. [23,24]
was cos θmin = 0.966. We choose the same θmin for a mean-
ingful comparison with data. Some K−p angular distribu-
tions (though of very limited quality) were reported in
ref. [23]. We have checked that our treatment of Coulomb
effects reproduces the measured small-angle differential
cross-sections in the relevant momentum range. The de-
pendence of our results on the infrared cutoff provided by
θmin will be discussed in sect. 3.4.

The Coulomb potential vanishes at infinity as 1/r and
leads to an infrared divergent scattering amplitude for
qcm → 0. In physical reality, however, the kaons are scat-
tered off neutral hydrogen atoms rather than off protons
and the range of the Coulomb interaction —given by the
Bohr radius of the hydrogen atom— is therefore finite.
Deviations from the pure Coulomb potential will be im-
portant, if the de Broglie wavelength of the kaons is of the
order of the atomic radius, corresponding to kaon labora-
tory momenta of a few keV/c. The lowest experimentally
accessible kaon momenta are around 100 MeV/c, four or-
ders of magnitude higher, so the electronic shielding of the
Coulomb potential can be safely neglected.

Deviations from the point Coulomb scattering ampli-
tude are expected when the wavelength of the incident
kaon is comparable to the size of the proton. This trans-
lates into kaon momenta larger than 200 MeV/c. For such
momenta K−p scattering is completely dominated by the
strong interaction since the Coulomb amplitude decreases
as 1/q2

cm. The corrections induced by finite size effects
in the Coulomb amplitude are negligible in the relevant
range of kaon energies. We will therefore work with the
formula given in eq. (14) combined with the small-angle
cut as mentioned before.

3 Results and discussion

In this section we present and discuss the numerical
results of our calculation. Low-energy antikaon-nucleon
scattering and reactions have been studied experimentally
decades ago [23–28]. The available data (admittedly with
large errors) are mostly restricted to K− momenta above
100 MeV/c. On the other hand, there is the new and pre-
cise DEAR measurement of the strong-interaction shift
and width in kaonic hydrogen [10] as well as a similar re-
cent analysis of the KEK collaboration [11], which set con-
straints for the strong-interaction part of the elastic K−p
amplitude at threshold. Further tight constraints are im-
posed by the accurately determined threshold branching
ratios into the inelastic channels πΣ and π0Λ [29,30]:

γ =
Γ (K−p→ π+Σ−)

Γ (K−p→ π−Σ+)
= 2.36± 0.04,

Rc =
Γ (K−p→ π+Σ−, π−Σ+)

Γ (K−p→ all inelastic channels)
= 0.664± 0.011,

Rn =
Γ (K−p→ π0Λ)

Γ (K−p→ neutral states)
= 0.189± 0.015 , (16)

and by the πΣ invariant-mass spectrum in the isospin
I = 0 channel [31].

Our approach has six subtractions constants a(µ) in
the different channels and eight constants given within cer-
tain limited ranges: the decay constant f and the higher-
order couplings bi, di. As mentioned before, the bi and
di have been constrained by the analysis of [7] which in-
cludes η photoproduction as a high-quality data set. Since
both pions and kaons are involved, we choose to vary the
decay constant f in the range given by its value in the
chiral limit, f = 88 MeV [32], and the physical kaon de-
cay constant FK = 112.7 MeV. Furthermore, only the “s”
approach in our investigation, i.e. the one that involves
the leading and next-to-leading order contact interactions
as well as the direct Born term, exactly coincides with the
framework chosen in [7]. We can therefore expect moder-
ate deviations in the numerical determination of the cou-
pling constants from a fit to low-energy hadronic data.

In the first part of this section, we compare the four dif-
ferent approaches described in the preceding section which
follow from the successive inclusion of the diagrams in
fig. 1 in the interaction kernel V . It turns out that in all
four cases the results cannot be brought into simultaneous
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satisfactory agreement with the elastic K−p elastic cross-
section and the kaonic hydrogen data from the DEAR
experiment [10], although the inclusion of the Coulomb
interaction ameliorates the situation compared to previ-
ous coupled-channels calculations. In order to examine
how well the four approaches under consideration agree
with the scattering data, we first exclude the DEAR data
from the fit and “predict” the strong-interaction shift and
width in kaonic hydrogen based on the rest of the low-
energy scattering data. We note that the “u” approach
yields the fit with the smallest overall χ2 value, but only
slightly larger values are obtained in the “c” and “s” ver-
sions, whereas the “WT” model, based only on the lead-
ing Weinberg-Tomozawa term, has a significantly larger
χ2. However, one should keep in mind that the “WT” ap-
proach has less parameters.

As a second step, we then investigate the changes of
the results when the DEAR data are included in the fit.
For this purpose it is sufficient to restrict ourselves to the
“u” ansatz involving all the diagrams in fig. 1 —i.e. the
entire set of next-to-leading order contributions to the s-
wave amplitude— since qualitatively similar results are
obtained in the “c” and “s” models.

The third part of this section is devoted to the detailed
discussion of Coulomb corrections in the elastic K−p scat-
tering cross-section, and we conclude with a study of the
relevant resonance poles in the complex energy plane.

3.1 Comparison of the different approaches

We have first performed an overall χ2 fit to the avail-
able low energy K̄N data excluding the strong level shift
and width of kaonic hydrogen. In order to emphasize the
importance of the precisely measured threshold branching
ratios, the χ2 value of each observable has been divided by
the number of pertinent data points. The resulting numer-
ical values of the parameters are compiled in table 1. At
first glance, it may seem that the subtraction constants
a(µ) are very sensitive on the selected interaction ker-
nel, but this is merely due to the normalization given in
eq. (11). In our approach the a(µ) are all small numbers
in the order of 10−3, which translates into values close to
−2 in the framework of [5], and are therefore —according
to the authors of [5]— “of natural size”. Note also that
the variations in a(µ) are small in the two most relevant
channels K̄N and πΣ. The larger variations in the other
channels could easily be weakened without destroying the
quality of the fits and by increasing the pertinent χ2 val-
ues only by a small amount, but we prefer not to modify
the χ2 fits in this respect. Moreover, our subtraction con-
stants in the important channels πΣ, K̄N are also roughly
compatible with the numbers following from the match-
ing condition to the crossed amplitude as advocated in [6].
In the “WT” and “c” approaches, the value of the pseu-
doscalar decay constant f tends towards the physical kaon
decay constant, whereas it is lowered by the inclusion of
s- and u-channel Born terms. The low energy constants
bi, di are roughly compatible with the numbers obtained
from η photoproduction by employing a closely related

Table 1. Numerical values of the parameters for the different
approaches. The subtraction constants are taken at µ = 1 GeV.

“WT” “c” “s” “u”

aK̄N (10−3) −0.38 −1.64 −2.13 −2.16
aπΛ (10−3) 0.21 5.43 −2.32 −6.34
aπΣ (10−3) 2.69 −1.01 −2.16 −1.24
aηΛ (10−3) 4.73 2.36 −0.53 −1.99
aηΣ (10−3) 5.56 1.72 3.55 −2.75
aKΞ (10−3) −4.38 2.91 0.32 −4.37
f (MeV) 111.2 111.6 103.6 103.3

b0 (GeV−1) — −0.24 −0.27 −0.31
bD (GeV−1) — 0.03 0.00 0.00

bF (GeV−1) — −0.02 −0.12 −0.13
d1 (GeV−1) — −0.15 −0.15 −0.16
d2 (GeV−1) — 0.11 0.11 0.12

d3 (GeV−1) — 0.28 0.31 0.25

d4 (GeV−1) — −0.32 −0.31 −0.23

Table 2. Threshold branching ratios as defined in the text,
resulting from the different approaches.

“WT” “c” “s” “u” Exp. [29,30]

γ 2.35 2.36 2.36 2.36 2.36± 0.04

Rc 0.635 0.655 0.655 0.661 0.664± 0.011

Rn 0.203 0.189 0.187 0.189 0.189± 0.015

coupled-channels approach [7]. We note that the bi pa-
rameters in the “u” fit correspond at tree level to the KN

sigma terms σ
(1)
KN (0) = 305 MeV and σ

(2)
KN (0) = 181 MeV.

These numbers are in fair agreement with the values for
the tree level contributions presented in [33] (including a
πN sigma term σπN (0) ' 30 MeV at tree level).

In fig. 2 we show the results for the elastic and
inelastic cross-sections of K−p scattering. The four
lines correspond to the four different approaches under
consideration, all of them in good agreement with the
experimental data. The πΣ mass spectrum in the isospin
I = 0 channel is displayed in fig. 3a. It is well reproduced
by the approaches which include the additional O(p2)
contact terms (“c”, “s”, “u”), whereas the “WT” ap-
proach fails to explain the experimental data points for
higher invariant energies. Following ref. [5] the experimen-
tal data displayed in fig. 3 can be regarded as a π−Σ+

event distribution originating from a generic s-wave
I = 0 source. This source is assumed to be dominated
by K̄N and πΣ I = 0 states which are multiplied by
energy-independent coefficients r1 and r2, respectively.
Since the experimental data are not normalized, only the
ratio r1/r2 is of significance. Utilizing this ansatz, we
obtain the curves in fig. 3b and observe that now all four
approaches reproduce the experimental spectrum almost
equally well. But the number of free parameters has been
increased by one and —consequently— the quality of the
fits has improved. The ratios r1/r2 range between 1.40
for the “WT” and 0.96 for the “c” approach. Within this
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Fig. 2. Total cross-sections for K−p scattering into various channels. The data are taken from [23] (empty squares), [24] (empty
triangles), [25] (filled circles), [26] (filled squares), [27] (filled triangles), [28] (stars). The dashed, dotted, dot-dashed and solid
lines correspond to the approaches “WT”, “c”, “s” and “u”, respectively.

scenario an I = 0 source with roughly equal portions of
initial K̄N and πΣ states thus seems to be favored by all
schemes, with a tendency toward higher K̄N shares.

The results for the threshold branching ratios are com-
piled in table 2. Independently of the chosen approach, the
quantities γ and Rn agree well with the experimental num-
bers. For the branching ratio Rc into charged final states
the situation is different. Whereas the “c”, “s”, and “u”
fits are in perfect agreement with the experimental error
bars, the “WT” result happens to be too small in magni-
tude emphasizing again the importance of O(p2) contact
terms.

Having so far omitted the strong-interaction shift and
width in kaonic hydrogen from the fits, we can now pre-
dict these observables for the different approaches. To this
end, we employ the result of [34] relating the ground state
strong energy shift ∆E and width Γ of kaonic hydrogen
to the K−p scattering length aK−p in the presence of elec-
tromagnetic corrections:

∆E− i

2
Γ = −2α3µ2caK−p [1−2αµc(lnα−1)aK−p] . (17)

The reduced mass of the K−p system is denoted by
µc, α is the fine-structure constant, and the scattering
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Table 3. Shown are the K−p scattering lengths aK−p as well as the strong-interaction shift ∆E and width Γ in kaonic hydrogen
resulting from eq. (19) (subscript D) and eq. (17) (subscript c).

“WT” “c” “s” “u”

aK−p (fm) −0.83 + 1.10i −0.75 + 0.86i −0.85 + 0.84i −0.78 + 0.92i

∆ED (eV) 344 311 350 321

ΓD (eV) 904 712 692 755

∆Ec (eV) 374 321 349 335

Γc (eV) 691 560 526 589

Fig. 3. π−Σ+ event distribution from [31], where statistical
errors have been supplemented following [35]. The curves in
diagram (a) where obtained by assuming a πΣ invariant-mass
spectrum with I = 0; the curves in diagram (b) result from the
ansatz advocated in [5]. The dashed, dotted, dot-dashed and
solid lines correspond to the “WT”, “c”, “s” and “u” approach,
respectively.

length aK−p is given by the strong-interaction T -matrix
at threshold

aK−p =
1

8π
√
s
TK−p→K−p(s)|s=(m

K−+Mp)2 . (18)

In order to demonstrate the importance of the electromag-
netic corrections calculated in [34], we compare eq. (17)
with the predictions derived from the well-known Deser-
Trueman formula [36]

∆E − i

2
Γ = −2α3µ2caK−p (19)

Fig. 4. Predictions for the strong-interaction shift and width
of kaonic hydrogen from the different approaches both by us-
ing the Deser-Trueman formula, eq. (19), (empty symbols) and
by including isospin-breaking corrections, eq. (17), (filled sym-
bols). The “WT”, “c”, “s” and “u” approach is depicted by tri-
angles, diamonds, squares and circles, respectively. The DEAR
data are represented by the shaded box [10], the KEK data by
the light-gray box [11].

and the kaonic hydrogen data from the DEAR [10] and
KEK [11] experiments in fig. 4; the pertinent numerical
values are displayed in table 3. The shifts and widths cor-
responding to the different approaches agree all with the
error ranges given in [11] if eq. (17) is utilized. In contrast,
both the shift and the width of the new DEAR experi-
ment cannot be accommodated by the coupled-channels
approaches constrained by scattering and reaction cross-
sections, although the electromagnetic corrections given
in [34] reduce the width Γ by a significant amount. As
can be seen in fig. 4 the disagreement is reduced by the
inclusion of higher-order contact terms (approaches “c”,
“s”, “u”).

In summary we note that the approaches which in-
clude the O(p2) contact terms (“c”, “s”, “u”) describe all
available low-energy hadronic scattering data excluding
kaonic hydrogen experiments at DEAR. The fits to the
K−p → π−Σ+ cross-section and the (related) branching
ratio Rc which we obtain within the “WT” approach are
not of the same high quality. In this case a decent de-
scription of the πΣ mass spectrum in fig. 3 can only be
achieved by utilizing the ad hoc parametrization suggested
in [5], but not by a simple isospin zero πΣ invariant-mass
distribution. One should keep in mind however that the



86 The European Physical Journal A

Fig. 5. Results for the strong-interaction shift and width of
kaonic hydrogen from the fits “1”, “2” and “3” depicted by
circles, triangles and squares. Empty symbols correspond to
the Deser-Trueman formula, eq. (19), full symbols to eq. (17),
where isospin-breaking corrections are included. The DEAR
data are represented by the shaded box [10], the KEK data by
the light gray box [11].

leading-order “WT” framework is oversimplified. It does
not involve the coupling constants bi, di which turn out
to be important in the more complete approaches.

3.2 Inclusion of the DEAR data

As already mentioned, the new high-precision DEAR
data [10] set additional tight constraints on K̄N inter-
actions. In this section we explore changes of our results
when the DEAR data are included in the fit. For brevity
we restrict ourselves to the discussion of the “u” scheme,
the one that has turned out most successful in the pre-
vious steps. Apart from yielding the least overall χ2 fit
in the previous section, it includes the full set of next-to-
leading order contributions to the interaction kernel. We
utilize this “u” fit and rename it “1”. Forcing the fit to
strictly remain within the error range given by the DEAR
experiment, we obtain result “3”, see fig. 5. The detailed
numbers can be found in table 4. Fit “2” represents a com-
promise between fits “1” and “3” in the presence of the
DEAR data. (Note, however, that fit “2” is not unique;
and is presented here only to illustrate the changes seen
in K−p scattering processes when the DEAR data are ap-
proached from the initial fit “1”.) The numerical values of
the parameters for the different fits are collected in table 5.

Total cross-sections of K−p scattering into various
channels are shown in fig. 6. Deviations between fit “3”
(which satisfies the DEAR constraints) and fit “1” (where
these constraints have been omitted) are most pronounced
in the elastic channel K−p → K−p. Approaching the
DEAR data by going from fit “1” to fit “2” and eventu-
ally to fit “3” subsequently lowers the total elastic cross-
section in the whole energy range under consideration and
produces results which lie below the experimental data
points (not without mentioning again that these data sets
themselves scatter over a wide range). While there may be

Table 4. Shown are the K−p scattering lengths aK−p as well
as the strong-interaction shift ∆E and width Γ in kaonic hy-
drogen resulting from eq. (19) (subscript D) and eq. (17) (sub-
script c).

“1” “2” “3”

aK−p (fm) −0.78 + 0.92i −0.51 + 0.82i −0.57 + 0.56i

∆ED (eV) 321 211 236

ΓD (eV) 755 678 465

∆Ec (eV) 335 236 235

Γc (eV) 589 580 390

Table 5. Numerical values of the parameters for the different
fits described in the text. The subtraction constants are taken
at µ = 1 GeV.

“1” “2” “3”

aK̄N (10−3) −2.16 −0.95 −2.62
aπΛ (10−3) −6.34 0.59 11.46

aπΣ (10−3) −1.24 −1.80 −3.06
aηΛ (10−3) −1.99 −2.92 5.10

aηΣ (10−3) −2.75 −0.98 −4.26
aKΞ (10−3) −4.37 −2.90 3.69

f (MeV) 103.3 103.1 94.4

b0 (GeV−1) −0.31 −0.36 −0.20
bD (GeV−1) 0.00 0.00 0.14

bF (GeV−1) −0.13 −0.13 −0.11
d1 (GeV−1) −0.16 −0.11 −0.30
d2 (GeV−1) 0.12 0.05 0.02

d3 (GeV−1) 0.25 0.31 0.39

d4 (GeV−1) −0.23 −0.32 −0.35

Table 6. Threshold branching ratios as defined in the text,
resulting from the different fits.

“1” “2” “3” Exp. [29,30]

γ 2.36 2.35 2.38 2.36± 0.04

Rc 0.661 0.653 0.631 0.664± 0.011

Rn 0.189 0.194 0.176 0.189± 0.015

questions about the detailed treatment of Coulomb cor-
rections, these effects can safely be neglected for kaon mo-
menta above 200 MeV/c. Our findings suggest that within
coupled-channels schemes constrained by large amounts of
data, the new accurate DEAR results and the old elastic
K−p scattering cross-sections at low energy cannot be si-
multaneously accommodated.

The results in the inelastic K−p scattering channels
are not altered significantly by the inclusion of the DEAR
data, with the exception of the reaction K−p → π±Σ∓

where the cross-sections resulting from fit “3” are slightly
reduced. However, the threshold values of these curves
also enter the branching ratios γ and Rc. While γ, i.e.
the branching ratio of the two charged πΣ channels,
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Fig. 6. Total cross-sections of K−p scattering into various channels. The data are taken from [23] (empty squares), [24] (empty
triangles), [25] (filled circles), [26] (filled squares), [27] (filled triangles), [28] (stars). The solid, dotted and dashed lines represent
the fits “1”, “2” and “3”, respectively.

remains within experimental errors, cf. table 6, the value of
Rc drops substantially below the experimental boundary
when moving from fit “1” to fit “3”. This fact raises an-
other consistency issue. While the elastic K−p scattering
data close to threshold include the Coulomb interaction,
both the branching ratio Rc and the observables measured
at DEAR represent exclusively effects of the strong inter-
action. These observables therefore provide a cleaner con-
sistency check than elastic K−p scattering. The branching
ratio Rn, on the other hand, involves neutral channels. It
turns out to be uncritical and it is well reproduced by any
of the fits.

If the π−Σ+ event distribution from [31] is interpreted
as a pure I = 0 πΣ invariant-mass spectrum, approach-
ing the DEAR data results in shifting the peak of the
curve to lower energies and therefore worsening the fit to
the data, cf. fig. 7a. The assumption of a generic I = 0
source made up of an admixture of K̄N and πΣ states [5]
improves the fit by introducing one additional parame-
ter, see fig. 7b. One striking feature is that the resulting
ratio r1/r2 = 2.23 for fit “3” deviates substantially from
those fits for which the DEAR data were not taken into
account, and corresponds to a source that is dominated
by K̄N states also below threshold.
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Fig. 7. π−Σ+ event distribution from [31], where statistical
errors have been supplemented following [35]. The curves in
diagram (a) where obtained by assuming a πΣ invariant-mass
spectrum with I = 0; the curves in diagram (b) result from
the ansatz advocated in [5]. The solid, dotted and dashed lines
correspond to the fits “1”, “2” and “3”, respectively.

As pointed out in [37] Λ(1405) photoproduction, which
has been investigated experimentally at SPring-8 [15] and
at ELSA, could serve as a tool to constrain K̄N dynam-
ics below threshold. If t-channel exchange of K− mesons
can be isolated, it should be possible to extract from the
process γp → K+πΣ the K−p → πΣ amplitudes be-
low the K−p threshold. This statement is also of inter-
est for the present investigation, since the fits which ei-
ther in- or exclude the DEAR data yield different pre-
dictions for these amplitudes. In fig. 8 we plot the quan-

tity 4 |qK−pcm |√s σK−p→π∓Σ±(s) continued below thresh-
old, and the experimental cross-section data above the
K−p threshold have been normalized accordingly. In the
case of fit “3”, the one consistent with the DEAR data,
the shape of the curve is altered for both final states
π−Σ+ and π+Σ−. Compared to fit “1” the peak position
is shifted to lower energies, while the width is considerably
increased. This difference can be examined experimentally
once the necessary t-channel analysis and normalization of
the SPring-8 results [15] has been performed. These data
cover an energy range from the πΣ threshold up to en-
ergies above the K−p threshold, where consistency with
existing cross-section data can be tested. In conclusion,

Fig. 8. Shown are the cross-sections for K−p → π−Σ+ (a)

and K−p → π+Σ− (b) multiplied by 4|qK−pcm |√s and con-
tinued below K−p threshold (vertical line). The experimental
data points are the same as in fig. 6, but have been modified
accordingly. The solid, dotted and dashed lines correspond to
the fits “1”, “2” and “3”, respectively.

the SPring-8/ELSA experiments may provide a further
important consistency check of scattering data and the
DEAR results within our framework.

It is instructive to investigate the real and imaginary
parts of the elastic K−p → K−p scattering amplitude
below threshold (see figs. 9, 10). The important role of
next-to-leading order dynamics (the “c”, “s” and “u” ver-
sions) as compared to the leading order driven only by the
Weinberg-Tomozawa term (the “WT” version) becomes
visible in fig. 9. The influence of the additional constraint
imposed by the DEAR threshold data is seen in fig. 10. It
has a pronounced effect in shifting the Λ(1405)-resonance
spectrum further down in

√
s, primarily by enforcing a

smaller imaginary part of fK−p→K−p at threshold.

3.3 K−n and K+p scattering

Once the parameters have been fixed from K−p data, the
same approach provides predictions for K−n scattering,
since no new unknown constants appear. The real and
imaginary parts of the elastic s-wave K−n scattering am-
plitude are presented in fig. 11 for the “WT”, “c” and “s”
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Fig. 9. Real (top panel) and imaginary part (bottom panel) of
the strong-interaction elasticK−p amplitude. The dashed, dot-
ted, dot-dashed and solid lines correspond to the approaches
“WT”, “c”, “s” and “u”, respectively. The K−p threshold is
indicated by the vertical line.

Table 7. K−n scattering lengths for the approaches “WT”,
“c” and “s”.

“WT” “c” “s”

aK−n (fm) 0.53 + 0.72i 0.61 + 0.71i 0.49 + 0.70i

frameworks. All three versions yield similar results and the
predicted scattering lengths given in table 7 are consistent
with the empirical value aK−n ∼ 0.4+ i 0.6 fm [38] within
errors.

We have refrained from presenting results for the
“u”-approach for K−n → K−n. The reason is the ap-
pearance of an unphysical subthreshold cut in the ηΣ−

channel at 1.426 GeV just below the K−n threshold. As
already mentioned in sect. 2.2, this is an artifact of the
on-shell formalism which would not be present in a full
field-theoretical calculation. The previously applied pro-
cedure of eliminating the unphysical subthreshold cut by
matching the contribution of the crossed Born diagram
to a constant value below a certain invariant energy

√
s0

does not work here since the singularity at 1.426 GeV is
just 7 MeV away from K−n threshold.

Fig. 10. Real (top panel) and imaginary part (bottom panel)
of the strong-interaction elasticK−p amplitude. The solid, dot-
ted and dashed lines represent the fits “1”, “2” and “3”, re-
spectively. The K−p threshold is indicated by the vertical line.

Finally, we note that in the K+-proton channel, the
different approaches (“WT”, “c” and “3”) yield scattering
lengths in the range aK+p ' −(0.26 . . . 0.36) fm, consistent
with the empirical aK+p ' −0.33 fm [38].

3.4 Coulomb effects

For small incident kaon momenta close to K̄N threshold,
the elastic K−p scattering cross-section receives sizable
contributions from both the strong and the electromag-
netic interaction. Coulomb interactions are taken into ac-
count by utilizing the quantum-mechanical Coulomb scat-
tering amplitude eq. (14). Due to the infinite-range nature
of the Coulomb potential, the scattering amplitude is in-
frared divergent in the limit of small incident momenta as
well as small scattering angles.

As explained in sect. 2.3, the divergence at qcm = 0
can be ignored in the energy regime accessible by the scat-
tering experiments. However, when performing the inte-
gration over the center-of-mass scattering angle in order
to calculate the total elastic cross-section a cutoff in the
angle must be introduced. Two of the experiments that
have produced data at the lowest kaon momenta, exclude
forward scattering angles and consider only the range
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Fig. 11. Real (top panel) and imaginary part (bottom panel)
of the strong-interaction (s-wave) elastic K−n amplitude. The
dashed, dotted and dot-dashed lines correspond to the ap-
proaches “WT”, “c” and “s”, respectively. The K−n threshold
is indicated by the vertical line.

−1 ≤ cos θcm ≤ 0.966 [23,24]. We choose to work with the
same angle cutoff in order to perform consistent compar-
isons. The contributions of the Coulomb and the strong in-
teraction as well as their coherent sum are displayed in an
exemplary case for fit “1” in fig. 12a. While the corrections
due to the Coulomb interaction are completely negligible
for kaon laboratory momenta greater than 150 MeV/c,
they start becoming important below 100 MeV/c.

In fig. 12b we show the dependence of our results on
the small-angle cut. The gray band indicates the variation
between cos θmin = 0.7, so that the Coulomb amplitude is
highly suppressed, and cos θmin = 0.99 where it is sizable.
The curves have been normalized to the solid angle cov-
ered by the experiments [23,24]. For large incident kaon
momenta (above 150 MeV/c) where the strong s-wave am-
plitude dominates, the omission of forward scattering an-
gles makes the elastic cross-section decrease by only a few
percent when compared with the integration over the full
solid angle. It is therefore justified to compare our results
directly with all experimental data, given their large error
spread.

Fig. 12. Top: contributions to the total elastic cross-sections
of K−p scattering from Coulomb interaction (dotted), strong
interaction (dashed) and their coherent sum (solid). Bottom:
dependence on the small-angle cutoff excluding small center-
of-mass angles. The lower boundary of the band corresponds to
cos θmin = 0.7, the upper one to cos θmin = 0.99; the solid line
represents the value established by the experiments [23,24],
which we also use in our calculations: cos θmin = 0.966.

3.5 Resonance poles

Finally, we turn our attention to the poles of the strong-
interaction T -matrix in the complexW ≡ √s plane. These
poles are usually classified according to their isospin and
we keep the notation of I = 0 and I = 1 poles even though
we work in the physical basis where isospin is broken by
the physical masses of the particles. Although we observe
two poles in the unphysical sheet which is directly con-
nected to the physical region between the πΣ and K̄N
thresholds, their positions depend strongly on the chosen
approach. As a matter of fact, the formation of a pro-
nounced double pole structure close to the real axis as
reported in [8] occurs only in the “WT” model. When
next-to-leading order corrections are taken into account
the second pole is shifted further away from the real axis
and its contribution to the physical region tends to dis-
solve in the background.

Following [8] we define complex parameters gi repre-
senting the contribution to the coupling strength at the
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Table 8. Positions of the poles which are relevant for Λ(1405)
and their coupling strengths to isospin I = 0 states.

|gi|
W0 (MeV) πΣ K̄N ηΛ KΞ

“WT” 1431− 17i 2.46 3.64 1.82 0.49
1391− 55i 4.29 3.06 0.84 0.81

“c” 1418− 20i 2.59 4.22 1.98 0.72
1440− 120i 5.05 3.60 1.69 1.63

“s” 1418− 19i 2.46 4.29 2.13 0.60
1419− 134i 5.02 3.72 1.49 1.73

“u” = “1” 1419− 21i 2.68 4.42 2.27 0.36
1409− 125i 5.13 3.99 1.90 1.10

“2” 1408− 37i 4.19 5.55 3.28 0.49
1449− 106i 6.16 6.12 4.25 1.39

“3” 1398− 27i 3.08 4.86 2.58 1.55
1404− 159i 4.58 4.57 2.97 1.17

pole from the channel with index i1. They can be extracted
by the residue of the T -matrix at the position W0 of the
pole

gigj = ResW0
Tij . (20)

Since the T -matrix is merely defined up to an arbitrary
complex phase, only the modulus of gi is meaningful. In
table 8 we show the positions and coupling strengths of
the Λ(1405) poles classified according to the different ap-
proaches and fits. For clarity, the pole positions are also
depicted in fig. 13. A result common to all approaches is
the fact that the pole which couples strongly to the I = 0
K̄N state (see open symbols in fig. 13) is located closer
to the real axis, in agreement with [8]. The inclusion of
higher-order contact terms slightly lowers its real part,
whereas its position is practically not affected when the
direct and crossed Born terms are taken into account (ap-
proaches “s” and “u”), cf. fig. 13a. The second pole which
couples strongly to the πΣ channels is shifted drastically
by going from the “WT” to the “c” approach. It moves up
in energy (even above the K̄N thresholds) and away from
the real axis. The inclusion of the s- and u-channel Born
terms successively brings the pole to lower energies again.
In the “u” approach it is almost in line with the first pole,
but located at quite some distance from the real axis, not
supporting a pronounced double-pole structure close to
the real axis.

In order to study the interplay of the two poles and
their effect on the real axis and thus on physical observ-
ables, we construct a simple model as done in [8]. If the
T -matrix were solely furnished by two Λ(1405) poles, it
would be given by

T
(poles)
ij =

g
(1)
i g

(1)
j

W −W
(1)
0

+
g
(2)
i g

(2)
j

W −W
(2)
0

, (21)

where the superscripts (1), (2) refer to the pertinent poles.
In fig. 14 we compare this simple pole amplitude to the

1 Note that our definition of the T -matrix differs from that
in [8] by a factor of −2

√
MaMb.

Fig. 13. Top: pole positions of the T -matrix in the complex
W plane. The triangles, diamonds, squares and circles corre-
spond to the “WT”, “c”, “s” and “u” approach, respectively.
The dashed lines represent the K−p and K̄0n cuts, respec-
tively. Bottom: pole positions of the T -matrix in the complex
W plane. The circles, triangles and squares correspond to the
fits “1”, “2” and “3”, respectively.

full coupled-channels T -matrix in the relevant I = 0
πΣ → πΣ and K̄N → πΣ channels by plotting the quan-
tity |qπΣcm | |TπΣ,K̄N→πΣ |2, where T is given by either just
one pole, both poles, or by the full coupled-channels re-
sult. For illustrative purposes we restrict ourselves to the
“WT” and “c” models. Both for the “WT” and “c” ap-
proach the K̄N → πΣ amplitude is dominated by the
pole close to the real axis, which couples most strongly
to the K̄N states, and the full T -matrix element is well
described by the pole model. For the process πΣ → πΣ
the biggest portion of the “WT” result stems again from
the pole contributions, reflecting the double pole structure
close to the real axis. In contrast, the inclusion of O(p2)
contact terms in the “c” approach significantly reduces
the influence of the second pole which couples mainly to
the I = 0 combination of πΣ channels, giving rise to a
large background contribution to the amplitude. This is
also observed for the “s” and “u” approaches. Note also
that due to interference effects the subthreshold peak of
the πΣ → πΣ pole model amplitude appears at a similar
position in both the “WT” and the “c” approach, although
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Fig. 14. Comparison of the pole model described in the text and the full coupled-channels T -matrix for the approaches “WT”
(upper figures) and “c” (lower figures). We plot the quantities |qπΣcm | |TK̄N→πΣ |2 (left column) and |qπΣcm | |TπΣ→πΣ |2 (right
column) for I = 0 meson-baryon states. The lines represent the contribution of the first pole (dashed), the second pole (dotted),
both (dot-dashed), and the full coupled-channels result (solid).

the second pole happens to be located at quite different
positions in the complex plane.

For completeness, we also show in table 8 and fig. 13
the pole positions and couplings extracted from the fits
“2” and “3”, obtained by approaching the constraints set
by the DEAR experiment. Again the pole with strong cou-
pling to K̄N is located close to the real axis, and its real
part is decreased by going from fit “1” to fit “3”. The posi-
tion of the second pole varies a lot with a strong tendency
to further depart from the real axis. Furthermore, we note
that the characteristic strong coupling of the second pole
to πΣ states is equaled in magnitude by the coupling to
the K̄N channel when the DEAR data are taken into
account. The key feature, independent of the additional
constraint imposed by the DEAR data, is that the con-
tribution from the second pole on the real axis dissolves
in the background once next-to-leading order (O(p2)) dy-
namics are turned on in addition to the leading Weinberg-
Tomozawa term.

We conclude that although the different approaches
yield similar fits to all available experimental data, the
pertinent pole structures are quite diverse. For the “WT”
version we observe a pronounced double pole structure as
described in [8]. For the schemes which include higher-
order contact terms, only the pole which couples most
strongly to the K̄N state is located close to the real axis.
The influence of the second pole is substantially reduced
and the T -matrix cannot be well approximated by the
outlined pole model. Instead, background contributions

are important. Our findings emphasize that the analytic
continuation of partial waves in the complex energy plane
depends sensitively on the basic dynamical input of the
underlying chiral SU(3) Lagrangian.

4 Conclusions

In the present work, we have critically examined and up-
dated the analysis of the K̄N system within the frame-
work of coupled-channels approaches combined with chi-
ral SU(3) dynamics. There is renewed interest in the in-
vestigation of the K̄N channel in the light of the new
accurate measurement of the strong-interaction shift and
width of kaonic hydrogen at DEAR which sets tight con-
straints. It is therefore worth investigating whether both
the DEAR data and the K−p scattering data can be ac-
commodated by coupled-channels analyses, while at the
same time trying to reduce the inherent model dependence
of these approaches wherein chiral effective field theory is
combined with a non-perturbative Bethe-Salpeter equa-
tion. The driving terms for the Bethe-Salpeter equation
are derived from the effective Lagrangian and constitute
a major source of model dependence. Several variants of
such approaches are commonly used in the literature, e.g.,
only the Weinberg-Tomozawa term originating from the
leading-order Lagrangian is taken into account, while in
other works direct and crossed Born terms are added or
contact interactions of the next-to-leading chiral order are
included.
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Table 9. Coefficients C
(a)
jb,ia = C

(a)
ia,jb of the leading-order contact interaction.

K−p K̄0n π0Λ π0Σ0 π+Σ− π−Σ+ ηΛ ηΣ0 K−Ξ+ K0Ξ0

K−p 4 2
√
3 1 0 2 3

√
3 0 0

K̄0n 4 −
√
3 1 2 0 3 −

√
3 0 0

π0Λ 0 0 0 0 0 0
√
3 −

√
3

π0Σ0 0 4 4 0 0 1 1

π+Σ− 4 0 0 0 2 0

π−Σ+ 4 0 0 0 2

ηΛ 0 0 3 3

ηΣ0 0
√
3 −

√
3

K−Ξ+ 4 2

K0Ξ0 4

In the present investigation, we have worked out the
driving terms in four consecutive steps. Starting from the
Weinberg-Tomozawa term, we successively added contact
interactions of second chiral order, the direct Born term
and the crossed Born term.

All four versions have in common that the agreement
with K̄N scattering data is partly spoilt once the new
tight constraints imposed by the DEAR experiment are
taken into account. (We mention though that the results
of these models fall within the larger error ranges of the
KEK experiment.) The largest discrepancies are observed
in the elastic K−p channel where the calculated cross-
section is substantially lowered by inclusion of the DEAR
data. Coulomb effects ameliorate the situation at low kaon
laboratory momenta below 100 MeV/c, but an offset to
elastic K−p scattering data remains. Moreover, electro-
magnetic corrections to the strong-interaction shift and
width in kaonic hydrogen as given in [34] reduce the dis-
crepancy further, but are not able to compensate the dif-
ference between the coupled-channels approaches and the
experimental data. Further tight phenomenological con-
straints in the K̄N system are provided by the thresh-
old branching ratios which have been measured very pre-
cisely. Inclusion of the DEAR data produces results for
the branching ratio Rc which are not in agreement with
the quoted experimental error ranges.

Another consistency check could be provided by study-
ing the K−p → πΣ amplitude below the K−p threshold,
since inclusion of the DEAR data amounts to a substan-
tial change in this amplitude. Experiments towards this
direction are currently analyzed at SPring-8/LEPS and at
ELSA, where photoproduction of Λ(1405) has been mea-
sured. If K− exchange in the t-channel can be isolated
from these data, the information gained would be very
useful in order to set constraints for the K̄N scattering
amplitude below threshold [37].

The comparison between the different variants of the
coupled-channels approaches can be summarized as fol-
lows. The quality of the fits to data is improved sub-
stantially by including next-to-leading order contact inter-

actions with new parameters of the effective Lagrangian
which we vary within reasonable ranges as explained in
the text. The inclusion of the Born terms, on the other
hand, leads only to minor changes. The treatment of the
interaction kernel at subleading order also destroys the
pronounced double-pole structure of the Λ(1405) close to
the real axis as observed in [8]. Although we still see two
poles in the relevant unphysical sheet, the pole with a
stronger coupling to the πΣ channel now moves far away
from the real axis, losing its importance for any physical
observables. As a consequence, the full partial wave am-
plitude for πΣ → πΣ is not approximated well by just
these two poles and the background contribution becomes
important.

The updated, constrained analysis presented here is
also of considerable interest in the discussion of possi-
ble deeply bound K−- nuclear states [39]. The amplitudes
shown in figs. 9, 10 suggest a complex, energy dependent
subthreshold K̄-nucleus potential which is attractive in
the K̄N energy range below the Λ(1405). Its imaginary
part decreases as the energy is lowered towards the πΣ
threshold, an effect that has been pointed out previously
in refs. [40]. This is a potential mechanism for supporting
narrow bound K̄ states at sufficiently large nuclear densi-
ties, but details concerning the strong energy dependence
of the driving potentials require additional constraints and
further investigation.

We thank M. Lutz and U.-G. Meißner for useful discussions.
Partial financial support by DFG and BMBF is gratefully ac-
knowledged. This research is part of the EU Integrated Infras-
tructure Initiative Hadronphysics under contract No. RII3-CT-
2004-506078.

Appendix A. Tree level amplitudes

The amplitudes for the meson-baryon scattering processes
φiB

σ
a → φjB

σ′

b (with spin indices σ, σ′) corresponding to
the tree level diagrams in fig. 1a, c, d have already been
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given in [5], but for completeness we present them here in
our notation along with the next-to-leading order contact
term depicted in fig. 1b. One obtains
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√
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The two-component Pauli-spinor of a baryon B with
spin σ is symbolized by χσB while the pertinent normaliza-
tion factor is given by NB =

√
EB +MB and Ex is the

center-of-mass energy of particle x. The center-of-mass
three-momenta of the initial and final particles are de-
noted by q and q

′, respectively. The Mandelstam variable
u is given by u = (p−k′)2, where p is the four-momentum
of the initial baryon and k′ that of the final meson. The co-

efficients C
(a)
jb,ia, C

(b1)
jb,ia and C

(b2)
jb,ia, which are symmetric un-

der the interchange of initial and final meson-baryon pairs,
are compiled in tables 9, 10 and 11, respectively, whereas

the non-zero axial vector couplings C
(c)
φB1,B2

(which are

symmetric under the combined transformation B1 ↔ B2

and φ↔ φ̄) are given by
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The interaction kernels utilized in the various ap-
proaches under consideration, “WT”, “c”, “s” and “u”,
are obtained by projecting out the s-wave part of the am-
plitudes according to eq. (8) with

V“WT” = V (a) , (A.6)

V“c” = V (a) + V (b) , (A.7)

V“s” = V (a) + V (b) + V (c) , (A.8)

V“u” = V (a) + V (b) + V (c) + V (d) . (A.9)
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